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Surface Impedance Boundary Conditions (SIBC) for the computation of resistive wall wakefields in linear accelerators are developed.
The method extends the Staggered Finite Volume Method in the Time Domain (SFVTD) for the discretization of Maxwells equations.
It uses an Auxiliary Differential Equation (ADE) formulation for general impedance functions describing frequency dependent wall
conductivity, surface roughness or metal oxidation. For the time discretization of the resulting dispersive equations a particular
technique based on exponential integration is employed. This allows to preserve the basic properties of the SFVTD method such as
low numerical dispersion and optimal stability bound which are of crucial importance for electromagnetic wakefield computations.
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I. Introduction

E lectromagnetic wakefields due to the finite conductivity
of cavity walls are one of the main concerns in the design

of electron accelerators. These so called resistive wall wake-
fields are the largest contributor to beam coupling impedances
in the high energy sections of the accelerator where extremely
short electron bunches are operated [1]. For an estimation
of these contributions one relies (almost) exculusively on
numerical simulations, since wakefield measurements within
the high-vacuum accelerator chamber are very cumbersome.

Conventional methods for the solution of Maxwell’s equa-
tions in the time domain, however, will usually fail for this
class of problems. This is primary due to the extremely high
frequency of wakefields resulting in large numerical dispersion
errors. These errors tend to accumulate in the course of
the simulation as, e.g., short electron bunches of µm-length
propagate over several meters within the accelerator. To cope
with this problem, specialized low-dispersion techniques have
been proposed [2]. The SFVTD method introduced in [3] is
one of them. It represents a volume-integral based formulation
with very appealing numerical properties. The dispersion error
of SFVTD is substantially smaller than that of the conventional
FDTD technique. The crucial property, however, is that the
method can be operated at a maximum stable time step cor-
responding to the 1D-CFL stability limit. Applying SFVTD at
this so called ’magic’ time step provides the exact, dispersion-
free solution for all electromagnetic waves propagating along
the three main axis directions (cf. [3]).

In order to take into account resistive and/or rough wall
wakefields in such simulations, however, an appropriate im-
plementation of broadband SIBC for SFVTD is needed. In
the following, this task is accomplished by combining the
ADE technique with a particular time stepping scheme. This
latter allows to maintain the numerical dispersion and stability
properties of the original SFVTD which are necessary for this
type of simulations.

II. The SFVTD Method

The basic idea of the SFVTD discretization is depicted in
Fig. 1. Fields and currents are allocated component-wise on
the faces of a Cartesian mesh. For each of these components a
unique control volume enclosing the corresponding mesh face
is introduced. Alternatively, one may think of three secondary,
staggered meshes which are obtained by shifting the original
mesh along the x-, y- and z-directions, respectively.

Figure 1: Allocation of fields and currents on mesh cells (black)
and corresponding control volumes (red) of SFVTD.

A discretization of Maxwell’s equations is obtained by
applying the generalized Stokes’ theorem for each of the 6 field
components on the corresponding control volumes. A detailed
derivation of these equations is given in [3]. Here, we begin
with the semi-discrete form of SFVTD:

Mµ
dh
dt

= −Ce (1)

Mε
de
dt

= CT h − j (2)

In (1), (2), e, h and j represent volume averages over the
control volumes of the electric, magnetic and current field
components, respectively. The matrices, C, Mε and Mµ are
the curl- and mass-operators of the method resulting from this
particular choice of integration volumes on the mesh. The
particular form of these matrices determines the numerical
properties of the SFVTD method such as the low numerical
dispersion and the large bound of stability.



III. SIBC-ADE Formulation
In the following, first order Leontovich type SIBC are con-

sidered, n×E(ω) = Zs(ω) n× n×H(ω), where n is the normal
to the surface. The frequency dependent impedance function
Zs(ω) is represented by a general pole-residue expansion as

Zs(ω) = jωL + α0 +

Np∑
i=1

αi

jω + βi
. (3)

In (3), αi, βi and L are real coefficients and Np is the order of
the pole-residue model. Note that, the parameter L corresponds
to the effective wall inductance which becomes particularly im-
portant for rough or oxidized surfaces. Following the procedure
proposed in [4], the SIBC is written in the time domain as a
set of ADEs,

n× E =

(
α0 + L

∂

∂t

)
(n× n× H) +

Np∑
i=1

Gi (4)

∂Gi

∂t
+ βiGi = αi(n× n× H), i = 1, . . . ,Np, (5)

where Gi are auxilliary fields resembling effective magnetic
currents on SIBC surfaces. Imposing (4) on SIBC surfaces
and applying SFVTD discretization leads to a modified semi-
discrete Faraday’s law:

(Mµ + LAs)
dh
dt

+ α0 Ash = −Ce − As

Np∑
i=1

gi (6)

with
dgi

dt
+ βigi = αih, i = 1, . . . ,Np, (7)

where gi are the auxilliary degrees of freedom in the SFVTD
sense, i.e., corresponding to volume averages of the magnetic
currents Gi on the face-staggered control volumes (cf. Fig. 1).
The SIBC-operator, As, in (6) turns out to be a diagonal matrix
with diagonal entries given by the mesh face areas for faces
lying on a SIBC surface and zero otherwise.

IV. Time Stepping
For the solution of (2),(6) and (7) in the time domain,

the following time stepping strategy is applied. The discrete
Ampere’s and Faraday’s equations, (2) and (6), respectively, are
time-updated as usual using a leap-frog scheme. To preserve
the stability bound of the original method, a semi-implicit
approach is applied for the lossy SIBC term α0 Ash appearing
in (6) (cf. [5]). Finally, the set of ADEs (7) is solved with
a second order accurate exponential time integrator [6]. The
latter approach is known to provide optimal stability for stiff
equations as is the case for the broadband SIBC-ADEs. Then,
the overall time stepping scheme reads,

gn
0 = α0hn−1/2, (8)

gn
i = gn−1

i e−βi∆t +
αi

βi

(
1 − e−βi∆t

)
hn−1/2, (9)

hn+1/2 = hn−1/2
− ∆tM̃

−1
µ

Ce + As

Np∑
i=0
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i

 , (10)

en+1 = en + ∆tM−1
ε

(
CT hn+1/2

− jn+1/2
)
, (11)

where a modified magnetic mass matrix M̃µ = Mµ + (L +

α0∆t/2)As is introduced. Note that M̃µ is diagonal, so that its
inverse can be readily computed.

V. Results

As a first validation test for the method, a cubical copper
resonator with side length l = 0.1 mm is considered. A TM211-
mode (λ = 81.65µm, skin depth δ = 34 nm) with 1J energy is
initially excited in the resonator. These are typical values for
the short range wakefields in electron accelerators.

Since a closed form analytical solution is not known, the
semi-analytical result [7] for the damping factor of lossy cavity
modes is used as a reference for investigating the accuracy
of the SIBC formulation. Figure 2 (top) shows the total
electromagnetic energy decaying in the cavity as a function
of time normalized to oscillation period T ≈ 0.27ps. The
numerical accuracy and convergence rate of the cavity filling
time with respect to the mesh resolution ∆ is shown in Fig. 2
(bottom). Second order convergence rate is observed. In all
simulations, the maximum possible time step matching exactly
the 1D-CFL stability limit is used.

Figure 2: EM field energy vs. normalized time (top). Numerical
convergence with respect to mesh resolution (bottom).
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